<® COMPUTER ORGANIZATION AND DESIGN @2@"@

The Hardware/Software Interface

| Chapter 5
Large and Fast:
Exploiting Memory
Hierarchy

| Memory Technology
Static RAM (SRAM)
0.5ns — 2.5ns, $2000 — $5000 per GB

Dynamic RAM (DRAM)
50ns — 70ns, $20 — $75 per GB

Magnetic disk
5ms — 20ms, $0.20 — $2 per GB

|deal memory
Access time of SRAM
Capacity and cost/GB of disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

‘ Principle of Locality
Programs access a small proportion of
their address space at any time

Temporal locality

ltems accessed recently are likely to be
accessed again soon

e.g., instructions in a loop, induction variables

Spatial locality

Items near those accessed recently are likely
to be accessed soon

E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

‘ Taking Advantage of Locality
Memory hierarchy

Store everything on disk

Copy recently accessed (and nearby)

items from disk to smaller DRAM memory
Main memory

Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory

Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Memory Hierarchy Levels

Block (aka line): unit of copying
May be multiple words

If accessed data is present in

Processor upper level
Hit: access satisfied by upper level
B EE Hit ratio: hits/accesses
If accessed data is absent

Miss: block copied from lower level
Time taken: miss penalty
Miss ratio: misses/accesses
=1 — hit ratio
| Then accessed data supplied from
upper level

Data is transferred

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Cache Memory

Cache memory

The level of the memory hierarchy closest to
the CPU

Given accesses X, ..., X_1, X,
o . How do we know if
the data is present?
o o Where do we look?

a. Before the reference to X,, b. After the reference to X,

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

| Direct Mapped Cache
Location determined by address
Direct mapped: only one choice
(Block address) modulo (#Blocks in cache)

OOOOOOOO
00000000
OOOOOOOO

#Blocks is a
>< - power of 2

Use low-order
address bits

‘ J \ .

00001 00101 01001 01101 10001 10101 11001 11101
Memory

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

| Tags and Valid Bits

How do we know which particular block is
stored in a cache location?

Store block address as well as the data

Actually, only need the high-order bits
Called the tag

What if there is no data in a location?

Valid bit: 1 = present, 0 = not present
Initially O

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Cache Example

8-blocks, 1 word/block, direct mapped
Initial state

Index
000
001
010
011
100
101
110
111

Tag Data

Z| 1 Z2|1Z2|1Z2|1Z2|Z2|1Z2|1Z2(<

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Cache Example

Word addr Binary addr Hit/miss | Cache block
22 10 110 Miss 110

Index
000
001
010
011
100
101

Tag Data

2| Z2Z2|1Z2|2|2|I<

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example

Word addr Binary addr Hit/miss | Cache block

26 11 010 Miss 010

Index Vv Tag Data

000 N

001 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Example

Word addr Binary addr Hit/miss | Cache block

22 10 110 Hit 110
26 11 010 Hit 010

Index Vv Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y |10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

Word addr Binary addr Hit/miss | Cache block

16 10 000 Miss 000
3 00 011 Miss 011
16 10 000 Hit 000

Index Vv Tag Data

001 N

010 Y 11 Mem[11010]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Word addr Binary addr Hit/miss | Cache block
18 10 010 Miss 010

Index Vv Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y |10 Mem[10110]

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Address Subdivision

Address (showing bit positions)
3130 --- 131211---2 10

Byte
offset
Hit +20 <10
Tag
Index Data
Index Valid Tag Data
0
1
2
1021
1022
1023
420 432
f:)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Example: Larger Block Size

64 blocks, 16 bytes/block

To what block number does address 1200
map?

Block address = |.1200/16] = 75
Block number = 75 modulo 64 = 11

31 10 9 4 3 0

Tag Index | Offset
22 bits 6 bits 4 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

‘ Block Size Considerations
Larger blocks should reduce miss rate
Due to spatial locality

But in a fixed-sized cache

Larger blocks = fewer of them
More competition = increased miss rate

Larger blocks = pollution

Larger miss penalty
Can override benefit of reduced miss rate
Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

‘ Cache Misses
On cache hit, CPU proceeds normally

On cache miss
Stall the CPU pipeline
Fetch block from next level of hierarchy

Instruction cache miss
Restart instruction fetch

Data cache miss
Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Write-Through

On data-write hit, could just update the block in
cache

But then cache and memory would be inconsistent
Write through: also update memory

But makes writes take longer
e.g., if base CPIl = 1, 10% of instructions are stores,
write to memory takes 100 cycles
Effective CPl =1 + 0.1x100 = 11
Solution: write buffer
Holds data waiting to be written to memory

CPU continues immediately
Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Write-Back

Alternative: On data-write hit, just update
the block in cache

Keep track of whether each block is dirty
When a dirty block is replaced
Write it back to memory

Can use a write buffer to allow replacing block
to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

‘ Measuring Cache Performance
Components of CPU time
Program execution cycles
Includes cache hit time
Memory stall cycles

Mainly from cache misses
With simplifying assumptions:

Memory stall cycles

_ Memory accesses

xMiss rate xMiss penalty
Program

_Instructions _ Misses

X —xMiss penalty
Program Instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

‘ Cache Performance Example
Given

|-cache miss rate = 2%

D-cache miss rate = 4%

Miss penalty = 100 cycles

Base CPI (ideal cache) = 2

Load & stores are 36% of instructions
Miss cycles per instruction

|-cache: 0.02 x 100 = 2

D-cache: 0.36 x 0.04 x 100 = 1.44
Actual CPI=2+2+1.44=5.44

|deal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

‘ Average Access Time

Hit time is also important for performance
Average memory access time (AMAT)

AMAT = Hit time + Miss rate x Miss penalty
Example

CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%
AMAT =1 + 0.05 x 20 = 2ns

2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

‘ Performance Summary

When CPU performance increased
Miss penalty becomes more significant
Decreasing base CPI

Greater proportion of time spent on memory
stalls

Increasing clock rate
Memory stalls account for more CPU cycles

Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Virtual Memory

Use main memory as a “cache” for
secondary (disk) storage
Managed jointly by CPU hardware and the
operating system (OS)
Programs share main memory

Each gets a private virtual address space
holding its frequently used code and data

Protected from other programs
CPU and OS translate virtual addresses to
physical addresses

VM “block” is called a page

VM translation “miss” is called a page fault

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Address Translation

Fixed-size pages (e.g., 4K)

Virtual address

Virtual addresses Physical addresses 3130292827 w-evvrrnrernrneeenns 15141312111098 «---v-vvee 3210

Address translation
%4 Virtual page number Page offset

; % Translation
% Disk addresses 292827 rrrereeidieeiiiiins 15141312111098 «---f---ee- 3210
Physical page number Page offset

Physical address

LA

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

The Memory Hierarchy

Common principles apply at all levels of
the memory hierarchy

Based on notions of caching
At each level in the hierarchy

Block placement

Finding a block

Replacement on a miss

Write policy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

Concluding Remarks

Fast memories are small, large memories are
slow

We really want fast, large memories ®
Caching gives this illusion ©
Principle of locality

Programs use a small part of their memory space
frequently

Memory hierarchy
L1 cache « L2 cache « ... &< DRAM memory
<> disk
Memory system design is critical for
multiprocessors

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

