
Chapter 5

Large and Fast:

Exploiting Memory

Hierarchy

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 2

Memory Technology

� Static RAM (SRAM)

� 0.5ns – 2.5ns, $2000 – $5000 per GB

� Dynamic RAM (DRAM)

� 50ns – 70ns, $20 – $75 per GB

� Magnetic disk

� 5ms – 20ms, $0.20 – $2 per GB

� Ideal memory

� Access time of SRAM

� Capacity and cost/GB of disk

§
5
.1

 In
tro

d
u
c
tio

n

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 3

Principle of Locality

� Programs access a small proportion of
their address space at any time

� Temporal locality

� Items accessed recently are likely to be
accessed again soon

� e.g., instructions in a loop, induction variables

� Spatial locality

� Items near those accessed recently are likely
to be accessed soon

� E.g., sequential instruction access, array data

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 4

Taking Advantage of Locality

� Memory hierarchy

� Store everything on disk

� Copy recently accessed (and nearby)
items from disk to smaller DRAM memory

� Main memory

� Copy more recently accessed (and
nearby) items from DRAM to smaller
SRAM memory

� Cache memory attached to CPU

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 5

Memory Hierarchy Levels

� Block (aka line): unit of copying
� May be multiple words

� If accessed data is present in
upper level
� Hit: access satisfied by upper level

� Hit ratio: hits/accesses

� If accessed data is absent
� Miss: block copied from lower level

� Time taken: miss penalty

� Miss ratio: misses/accesses
= 1 – hit ratio

� Then accessed data supplied from
upper level

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 6

Cache Memory

� Cache memory

� The level of the memory hierarchy closest to
the CPU

� Given accesses X1, …, Xn–1, Xn

§
5
.2

 T
h
e
 B

a
s
ic

s
 o

f C
a
c
h
e
s

� How do we know if
the data is present?

� Where do we look?

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7

Direct Mapped Cache

� Location determined by address

� Direct mapped: only one choice

� (Block address) modulo (#Blocks in cache)

� #Blocks is a
power of 2

� Use low-order
address bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 8

Tags and Valid Bits

� How do we know which particular block is
stored in a cache location?

� Store block address as well as the data

� Actually, only need the high-order bits

� Called the tag

� What if there is no data in a location?

� Valid bit: 1 = present, 0 = not present

� Initially 0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9

Cache Example

� 8-blocks, 1 word/block, direct mapped

� Initial state

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 N

111 N

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10

Cache Example

Index V Tag Data

000 N

001 N

010 N

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Miss 110

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

26 11 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12

Cache Example

Index V Tag Data

000 N

001 N

010 Y 11 Mem[11010]

011 N

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

22 10 110 Hit 110

26 11 010 Hit 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 11 Mem[11010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

16 10 000 Miss 000

3 00 011 Miss 011

16 10 000 Hit 000

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14

Cache Example

Index V Tag Data

000 Y 10 Mem[10000]

001 N

010 Y 10 Mem[10010]

011 Y 00 Mem[00011]

100 N

101 N

110 Y 10 Mem[10110]

111 N

Word addr Binary addr Hit/miss Cache block

18 10 010 Miss 010

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15

Address Subdivision

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16

Example: Larger Block Size

� 64 blocks, 16 bytes/block

� To what block number does address 1200
map?

� Block address = 1200/16 = 75

� Block number = 75 modulo 64 = 11

Tag Index Offset

03491031

4 bits6 bits22 bits

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17

Block Size Considerations

� Larger blocks should reduce miss rate

� Due to spatial locality

� But in a fixed-sized cache

� Larger blocks ⇒ fewer of them

� More competition ⇒ increased miss rate

� Larger blocks ⇒ pollution

� Larger miss penalty

� Can override benefit of reduced miss rate

� Early restart and critical-word-first can help

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18

Cache Misses

� On cache hit, CPU proceeds normally

� On cache miss

� Stall the CPU pipeline

� Fetch block from next level of hierarchy

� Instruction cache miss

� Restart instruction fetch

� Data cache miss

� Complete data access

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19

Write-Through

� On data-write hit, could just update the block in
cache
� But then cache and memory would be inconsistent

� Write through: also update memory

� But makes writes take longer
� e.g., if base CPI = 1, 10% of instructions are stores,

write to memory takes 100 cycles
� Effective CPI = 1 + 0.1×100 = 11

� Solution: write buffer
� Holds data waiting to be written to memory

� CPU continues immediately
� Only stalls on write if write buffer is already full

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20

Write-Back

� Alternative: On data-write hit, just update
the block in cache

� Keep track of whether each block is dirty

� When a dirty block is replaced

� Write it back to memory

� Can use a write buffer to allow replacing block
to be read first

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28

Measuring Cache Performance

� Components of CPU time
� Program execution cycles

� Includes cache hit time

� Memory stall cycles
� Mainly from cache misses

� With simplifying assumptions:

§
5
.3

 M
e
a
s
u
rin

g
 a

n
d
 Im

p
ro

v
in

g
 C

a
c
h
e
 P

e
rfo

rm
a
n
c
e

penalty Miss
nInstructio

Misses

Program

nsInstructio

penalty Missrate Miss
Program

accessesMemory

cycles stallMemory

××=

××=

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29

Cache Performance Example

� Given
� I-cache miss rate = 2%
� D-cache miss rate = 4%
� Miss penalty = 100 cycles
� Base CPI (ideal cache) = 2
� Load & stores are 36% of instructions

� Miss cycles per instruction
� I-cache: 0.02 × 100 = 2
� D-cache: 0.36 × 0.04 × 100 = 1.44

� Actual CPI = 2 + 2 + 1.44 = 5.44
� Ideal CPU is 5.44/2 =2.72 times faster

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30

Average Access Time

� Hit time is also important for performance

� Average memory access time (AMAT)

� AMAT = Hit time + Miss rate × Miss penalty

� Example

� CPU with 1ns clock, hit time = 1 cycle, miss
penalty = 20 cycles, I-cache miss rate = 5%

� AMAT = 1 + 0.05 × 20 = 2ns

� 2 cycles per instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31

Performance Summary

� When CPU performance increased

� Miss penalty becomes more significant

� Decreasing base CPI

� Greater proportion of time spent on memory
stalls

� Increasing clock rate

� Memory stalls account for more CPU cycles

� Can’t neglect cache behavior when
evaluating system performance

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 46

Virtual Memory

� Use main memory as a “cache” for
secondary (disk) storage
� Managed jointly by CPU hardware and the

operating system (OS)

� Programs share main memory
� Each gets a private virtual address space

holding its frequently used code and data
� Protected from other programs

� CPU and OS translate virtual addresses to
physical addresses
� VM “block” is called a page
� VM translation “miss” is called a page fault

§
5
.4

 V
irtu

a
l M

e
m

o
ry

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 47

Address Translation

� Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 60

The Memory Hierarchy

� Common principles apply at all levels of
the memory hierarchy

� Based on notions of caching

� At each level in the hierarchy

� Block placement

� Finding a block

� Replacement on a miss

� Write policy

§
5
.5

 A
 C

o
m

m
o
n
 F

ra
m

e
w

o
rk

 fo
r M

e
m

o
ry H

ie
ra

rc
h
ie

s

The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 87

Concluding Remarks

� Fast memories are small, large memories are
slow
� We really want fast, large memories �

� Caching gives this illusion ☺

� Principle of locality
� Programs use a small part of their memory space

frequently

� Memory hierarchy
� L1 cache ↔ L2 cache ↔ … ↔ DRAM memory

↔ disk

� Memory system design is critical for
multiprocessors

§
5
.1

2
 C

o
n
c
lu

d
in

g
 R

e
m

a
rk

s

